Perilipin-related protein regulates lipid metabolism in C. elegans

Marta Kostrouchová’s group at Charles University in Prague published this preprint on PeerJ on the role of Perlipin-related genes in worms (this is the abstract of the paper):

The perilipins are lipid droplet surface proteins that contribute to fat metabolism by controlling the access of lipids to lipolytic enzymes. Perilipins have been identified in organisms as diverse as metazoa, fungi, and amoebas but strikingly not in nematodes. Here we identify the protein encoded by the W01A8.1 gene in Caenorhabditis elegans as the closest homologue of metazoan perilipin. We demonstrate that nematode W01A8.1 is a cytoplasmic protein residing on lipid droplets. Human perilipins 1 and 2 localize in transgenic C. elegans on the same structures as proteins expressed from W01A8.1 gene. Inhibition and elimination of W01A8.1 affects the appearance of lipid droplets especially visible as the formation of large lipid droplets localized around the dividing nucleus during the early zygotic divisions. This phenomenon disappears in later stages of embryogenesis indicating the existence of an additional mechanism of lipid regulation in C. elegans. Our results demonstrate that perilipin-related regulation of fat metabolism is conserved in nematodes and provide new possibilities for functional studies of lipid metabolism.

Advertisements

Limits of aerobic metabolism in cancer cells

From Alexei Vazquez at the University of Glasgow is this paper posted on BioRxiv:

Cancer cells exhibit high rates of aerobic glycolysis and glutaminolysis. Aerobic glycolysis can provide energy and glutaminolysis can provide carbon for anaplerosis and reductive carboxylation to citrate. However, all these metabolic requirements could be in principle satisfied from glucose. Energy can be generated from oxidative phosphorylation (OxPhos) of glucose, anaplerosis can be accomplished using pyruvate carboxylate and citrate can be derived from glucose. Here we investigate why cancer cells do not satisfy their metabolic demands using aerobic biosynthesis from glucose. Based on the typical composition of a mammalian cell we quantify the energy demand and the OxPhos burden of cell biosynthesis from glucose. Our calculation demonstrates that aerobic growth from glucose is feasible up to a minimum doubling time that is proportional to the OxPhos burden and inversely proportional to the mitochondria OxPhos capacity. To grow faster cancer cells must activate aerobic glycolysis for energy generation and uncouple NADH generation from biosynthesis. To uncouple biosynthesis from NADH generation cancer cells can synthesize lipids from carbon sources that do not produce NADH in their catabolism, including acetate and the amino acids glutamate, glutamine, phenylalanine and tyrosine. Finally, we show that cancer cell lines commonly used in cancer research have an OxPhos capacity that is insufficient to support aerobic biosynthesis from glucose. We conclude that selection for high rate of biosynthesis implies a selection for aerobic glycolysis and uncoupling biosynthesis from NADH generation. Any defect or perturbation reducing the OxPhos capacity will exacerbate this selection.

Mitochondrial DNA Copy Number Variation Across Human Cancers

Published recently on BioRxiv from Chris Sander’s lab (this is the abstract):

In cancer, mitochondrial dysfunction, through mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), contributes to the malignant transformation and progression of tumors. Here, we report the first large-scale survey of mtDNA copy number variation across 21 distinct solid tumor types, examining over 13,000 tissue samples profiled with next-generation sequencing methods. We find a tendency for cancers, especially of the bladder and kidney, to be significantly depleted of mtDNA, relative to matched normal tissue. We show that mtDNA copy number is correlated to the expression of mitochondrially-localized metabolic pathways, suggesting that mtDNA copy number variation reflect gross changes in mitochondrial metabolic activity. Finally, we identify a subset of tumor-type-specific somatic alterations, including IDH1 and NF1 mutations in gliomas, whose incidence is strongly correlated to mtDNA copy number. Our findings suggest that modulation of mtDNA copy number may play a role in the pathology of cancer.